Norms of Some Projections on C[a, b]

WILLIAM A. LIGHT

Department of Mathematics, University of Lancaster, Lancaster, England Communicated by E. W. Cheney Received April 29, 1975

1. INTRODUCTION

Denote by C[a, b] the Banach space of all continuous real-valued functions defined on [a, b], with the supremum norm $||f|| = \max_{x \in [a,b]} |f(x)|$. Denote by $P_n[a, b]$ the subspace of C[a, b] consisting of all polynomials of degree at most n. Any bounded linear operator $L : C[a, b] \to P_n[a, b]$ such that $Lp = p \forall p \in P_n$ is a projection of C[a, b] onto $P_n[a, b]$. Let F be a family of projections from C[a, b] to $P_n[a, b]$. Then we say $L_0 \in F$ is minimal in F if $||L_0|| \leq ||L|| \forall L \in F$. Cheney and Price [1] provide an excellent survey of the whole field of projections. If the family F comprises all projections $L : C[a, b] \to P_n[a, b]$ then the minimal ||L|| is not known. We shall consider a particular family of projections F defined by

$$(L_n^{\alpha}f)(x) = \sum_{i=0}^n a_i C_i^{\alpha}(x), \qquad \alpha > -\frac{1}{2},$$

where the $C_i^{\alpha}(x)$ are polynomials orthogonal on [-1, 1] with respect to the weight function $(1 - x^2)^{\alpha - \frac{1}{2}}$ and

$$a_i = \gamma_i \int_{-1}^{1} (1 - t^2)^{\alpha - \frac{1}{2}} f(t) C_i^{\alpha}(t) dt,$$

where γ_i is a suitable normalization factor. These polynomials are, of course, the ultraspherical or Gegenbauer polynomials, and the case $\alpha = 0$ gives the Chebyshev polynomials $T_k(x) = \cos k\theta$, $x = \cos \theta$. It is well known [2] that

$$||L_n^0|| = \frac{1}{\pi} \int_0^{\pi} \left| \frac{\sin(n+\frac{1}{2})\theta}{\sin\theta/2} \right| d\theta = \frac{1}{\pi} \int_0^{\pi} |D_n(\theta)| d\theta,$$

where $D_n(\theta)$ is the Dirichlet kernel. Furthermore, by considering the function on $[0, \pi]$ given by

$$\hat{f}_n(\theta) = \operatorname{sgn}[D_n(\theta)]$$

WILLIAM A. LIGHT

we obtain $||L_n^0 f_n|| = ||L_n^0||$. By reference to Zygmund [3, p. 73] we see that $\hat{f}_n(x)$ for $x \in [-1, 1]$ has a Chebyshev series expansion uniformly convergent in the intervals of continuity of \hat{f}_n with Chebyshev coefficients defined as

$$d_k^{(n)} = \frac{2}{\pi k} \tan\left(\frac{\pi k}{2n+1}\right).$$

The norm of L_n^0 is now given by

$$|| L_n^0 || = \sum_{k=0}^n d_k^{(n)} T_k(1) = \sum_{k=0}^n d_k^{(n)}.$$

We shall show that for $0 < \alpha < 1$, $(L_n \hat{f_n})(1)$ is well defined and $(L_n \hat{f_n})(1) > 1$ $(L_n \circ f_n)$ (1). We make use of a formula connecting ultraspherical polynomials for varying α , which is due to Gegenbaueur [5]. For a summary of these and other results concerning connections between families of orthogonal polynomials the recent book by Askey [6] is well worth consulting. Let $C_n^{\lambda}(x) = \sum_{r=0}^{\lfloor n/2 \rfloor} b_r^{(n)} C_{n-2r}^{\alpha}(x)$. Then the $b_r^{(n)}$ are given by

$$b_r^{(n)} = \frac{\Gamma(\alpha)(n-2r+\alpha) \Gamma(r+\alpha-\lambda) \Gamma(n-r+\lambda)}{\Gamma(\lambda) \Gamma(\lambda-\alpha) r! \Gamma(n-r+\alpha+1)}$$

Now $T_n(x)$ is given by

$$T_n(x) = \frac{n}{2} \lim_{\lambda \to 0} \frac{1}{\lambda} C_n^{\lambda}(x).$$

Hence,

$$T_{n}(x) = \frac{n}{2} \lim_{\lambda \to 0} \sum_{r=0}^{\lceil n/2 \rceil} \frac{b_{r}^{(n)}}{\lambda} C_{n-2r}^{\alpha}(x)$$

and

$$\frac{b_r^{(n)}}{\lambda} = \frac{\Gamma(\alpha)(n-2r+\alpha) \Gamma(r+\lambda-\alpha) \Gamma(n-r+\lambda)}{\lambda \Gamma(\lambda) \Gamma(\lambda-\alpha) r! \Gamma(n-r+\alpha+1)}$$
$$= \frac{\Gamma(\alpha)(n-2r+\alpha) \Gamma(r+\lambda-\alpha) \Gamma(n-r+\lambda)}{\Gamma(\lambda+1) \Gamma(\lambda-\alpha) r! \Gamma(n-r+\alpha+1)}$$

Let

$$e_r^{(n)} = \frac{n}{2} \lim_{\lambda \to 0} \frac{b_r^{(n)}}{\lambda}$$

then

$$T_n(x) = \sum_{r=0}^{[n/2]} e_r^{(n)} C_{n-2r}^{\alpha}(x),$$

where

$$e_r^{(n)} = \frac{n\Gamma(\alpha)(n-2r+\alpha) \Gamma(r-\alpha) \Gamma(n-r)}{2\Gamma(-\alpha) r! \Gamma(n-r+\alpha+1)}.$$

With the above definitions we have the following result:

LEMMA 1. We have $e_r^{(n)} < 0$ and

$$|e_r^{(n)}| > |e_{r+1}^{(n+2)}|$$
 for $1 \le r \le [n/2]$ and $0 < \alpha < 1$.

Proof. The fact that $e_r^{(n)} < 0$ for $0 < \alpha < 1$, $1 \le r \le \lfloor n/2 \rfloor$ is obtained immediately from the observation that all the arguments to the gamma functions are positive, as are the factors $(n - 2r + \alpha)$, r! except for $\Gamma(-\alpha)$, which is negative for $0 < \alpha < 1$.

The $e_r^{(n)}$, $e_{r+1}^{(n+2)}$ are simply the coefficients of C_{n-2r} in the expansions of T_n and T_{n+2} , respectively. Since they are both negative for $1 < r < \lfloor n/2 \rfloor$ we have

$$\frac{|e_{r+1}^{(n+2)}|}{|e_{r}^{(n)}|} = \frac{e_{r+1}^{(n+2)}}{e_{r}^{(n)}} = \frac{(n+2)\Gamma(r+1-\alpha)\Gamma(n-r-1)}{(r+1)!\Gamma(n-r+\alpha+2)} \\ \cdot \frac{r!\Gamma(n-r+\alpha+1)}{n\Gamma(r-\alpha)\Gamma(n-r)}.$$

Using the relationship $\Gamma(z + 1) = z\Gamma(z)$ to eliminate the Γ terms we have

$$\frac{e_{r+1}^{(n+2)}}{e_r^{(n)}} = \frac{(n+2)(r-\alpha)}{n(r+1)(n-r+\alpha+1)(n-r-1)},$$

which is clearly less than unity, and the proof is complete.

2. REARRANGEMENT OF THE CHEBYSHEV SERIES

In this section we adopt for convenience the notation

$$T_n(x) = \sum_{k=0}^n a_k^{(n)} C_k^{\alpha}(x), \quad \text{where} \quad C_k^{\alpha}(1) = 1.$$
 (1)

Let

$$\hat{f}_n(x) = \sum_{k=0}^n d_k^{(n)} T_k(x) + \sum_{k=n+1}^\infty d_k^{(n)} T_k(x) = p_n(x) + q(x)$$

Then $(L_n {}^{\alpha} f_n)(x) = p_n(x)$ and $(L_n {}^{\alpha} f_n)(x) \simeq p_n(x) + (L_n {}^{\alpha} q)(x)$, where formally

$$(L_n^{\alpha}q)(x) = \sum_{k=n+1}^{\infty} d_k^{(n)} \sum_{i=0}^n a_i^{(k)} C_k^{\alpha}(x)$$
$$= \sum_{r=0}^n b_r C_r^{\alpha}(x)$$

and we have

$$b_r = \sum_{j=1}^{\infty} a_r^{(n+j)} d_{n+j}^{(n)}$$
(2)

For $(L_n \alpha \hat{f}_n)(1)$ to be well defined we require these expressions for the b_r to converge, when

$$(L_n \hat{f}_n)(1) - (L_n \hat{f}_n)(1) = \sum_{r=0}^n b_r.$$
(3)

3. Properties of the Coefficients $d_k^{(n)}$

LEMMA 2. The sums $\sum_{j=1}^{\infty} d_{n+2j}^{(n)}$ and $\sum_{j=1}^{\infty} d_{n+2j-1}^{(n)}$ both converge to non-positive limits.

Proof. The Chebyshev series $\sum_{k=0}^{\infty} d_k^{(n)} T_k(x)$ clearly converges at $x = \pm 1$, i.e., $\sum_{k=0}^{\infty} d_k^{(n)}$ and $\sum_{k=0}^{\infty} (-1)^k d_k^{(n)}$ both converge, which is sufficient to ensure the convergence of the two sums indicated in our lemma.

In the sum $\sum_{k=n+1}^{\infty} d_k^{(n)}$ the coefficient $d_{\lfloor p[n+\frac{1}{2}]\rfloor} = 0$, if p is even, where [x] signifies the integer part of $x \in \mathbb{R}$. Furthermore, since the sign of the $d_k^{(n)}$ is controlled by the sign of $\tan(\pi k/(2n+1))$, this coefficient $d_{\lfloor p(n+\frac{1}{2}) \rfloor}^{(n)}$ has n-1 negative coefficients preceding it, and n-1 positive coefficients following it. Since $\tan(\pi k/(2n+1))$ is symmetrical about $\lfloor p(n+\frac{1}{2}) \rfloor$ for p even and for $p(n+\frac{1}{2}) - n + 1 \le k \le p(n+\frac{1}{2}) + n - 1$ we have

$$|d_{[p(n+\frac{1}{2})]-r}^{(n)}| > |d_{[p(n+\frac{1}{2})]+r}^{(n)}| = 1 \leq r \leq n-1.$$

Now for any even value of $p \ge 2$ sums of the form

$$A_p = \sum_{\substack{1 - n \leqslant r \leqslant n-1 \\ r \text{ even}}} d_{p(n+\frac{1}{2})+r}^{(n)}, \qquad B_p = \sum_{\substack{1 - n \leqslant r \leqslant n-1 \\ r \text{ odd}}} d_{p(n+\frac{1}{2})+r}^{(n)}$$

must be negative, since each positive $d_{p(n+\frac{1}{2})+r}^{(n)}$, $0 \le r \le n-1$ has a corresponding negative $d_{p(n+\frac{1}{2})-r}^{(n)}$ of greater modulus. Finally, both $\sum_{j=1}^{\infty} d_{n+2j}^{(n)}$ and $\sum_{j=1}^{\infty} d_{n+2j-1}^{(n)}$ consist of either sums of the form A_p or B_p and the proof is complete.

4. NORMS OF PROJECTIONS

THEOREM. With the L_n^{α} defined as before we have

$$\min_{0 \le \alpha \le 1} \|L_n^{\alpha}\| = \|L_n^0\| \qquad \forall n \ge 1.$$

Proof. From (3) we have

$$(L_n \hat{f}_n)(1) - (L_n \hat{f})_n(1) = \sum_{r=0}^n b_r,$$

where $b_r = \sum_{j=1}^{\infty} a_r^{(n+j)} d_{n+j}^{(n)}$ from (2). In fact, since alternate $a_r^{(n+j)}$ are zero we have

$$b_r = \sum_{j=1}^{\infty} a_r^{(n+2j)} d_{n-2j}^{(n)}$$
 $n + r$ even,
 $= \sum_{j=1}^{\infty} a_r^{(n-2j-1)} d_{n+2j-1}^{(n)}$ $n + r$ odd.

Since the $a_r^{(n+2j)}$ and $a_r^{(n+2j-1)}$ are negative and decrease in modulus (Lemma 1) we have, by application of Lemma 2 that $b_r > 0$ for $0 \le r \le n$ and the result follows from the inequalities for $0 < \alpha < 1$:

$$||L_n^{\alpha}|| > ||L_n^{\alpha} f_n|| > (L_n^{\alpha} f_n)(1) > (L_n^0 f_n)(1) = ||L_n^0||.$$

The case for $\alpha = 1$ can be deduced from the continuity of $|L_n^{\alpha}|$.

5. Remarks

It does not seem possible to extend this method of proof to the cases where $\alpha > 1$, since the sign pattern of Lemma 1 is no longer preserved, although computational results indicate that the result holds good for $\alpha > 1$. The case for $\alpha = 1$ can also be obtained by using the relation $T_n(x) = \frac{1}{2} \{U_n(x) - U_{n-2}(x)\}$, when the proof is especially straightforward.

Similar relationships between C_n^{α} , $C_n^{\alpha+1}$ may perhaps yield the result for $\alpha > 1$. Clearly, the existing theorem can be extended to show that the Chebyshev projection is minimal in any family *F* whose orthogonal elements can be arranged so that Lemma 1 continues to hold.

ACKNOWLEDGMENTS

The author would like to thank Professor C. W. Clenshaw and Dr. D. Kershaw for many helpful discussions on the above material, and also the referee for his helpful suggestions.

WILLIAM A. LIGHT

References

- 1. E. W. CHENEY AND K. H. PRICE, Minimal projections, *in* "Approximation Theory" (A. Talbot, Ed.), Academic Press, New York, 1970.
- 2. M. GOLOMB, "Lectures on the Theory of Approximation," Argonne National Laboratory, Applied Mathematics Division, 1962.
- A. ZYGMUND, "Trigonometric Series," Vol. I, Cambridge Univ. Press, Cambridge, Mass., 1959.
- 4. G. SZEGÖ, "Orthogonal Polynomials," American Mathematical Society, Providence, R.I., 1967.
- L. GEGENBAEUR, "Zur Theorie der Functionen X_n™," Sitz. Akad. Niss. Wien, Math. Naturw. Kl. 66(2), 1872.
- 6. R. ASKEY, "Orthogonal Polynomials and Special Functions," SIAM, Philadelphia, Pa., 1975.