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1. INTRODUCTION

Denote by Cla, b] the Banach space of all continuous real-valued functions
defined on [a, b], with the supremum norm | f] = maX,e[q51 | f(x)| . Denote
by P,la. b] the subspace of Cla, b] consisting of all polynomials of degree at
most #. Any bounded linear operator L : Cla, b]— P,[a, b] such that
Lp = p ¥pe P, is a projection of Cla, b] onto P,[a, b]. Let Fbe a family of
projections from Cla, b] to P,[a, b]. Then we say L, € F is minimal in F if
it Lol <1 LIIVL e F. Cheney and Price [1] provide an excellent survey of the
whole field of projections. If the family F comprises all projections
L : Cla, b] — P,[a, b] then the minimal ! L || is not known. We shall consider
a particular family of projections F defined by

n

(Lnoff)(x) = Z H[C,*“(.\'), = .]3 5

PR ]

where the C;*(x) are polynomials orthogonal on [—1, 1] with respect to the
weight function (1 — x?)*~* and

1
a = yi | (U= 1yt fo) Couey di,

where y; is a suitable normalization factor. These polynomials are, of course,
the ultraspherical or Gegenbauer polynomials, and the case o == 0 gives the
Chebyshev polynomials T(x) == cos k8, x — cos 0. Tt is well known [2] that

el = [

where D,(0) is the Dirichlet kernel. Furthermore, by considering the function
on [0, 7] given by

. RS 7"
sin(n -+ 1) 0 ~ d — [ 1 Do) e,

T Jy

f:(0) = sgn[D,(6)]
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we obtain HL,,”an - L. By reference to Zygmund [3, p. 73] we see
that f,(x) for x e [—1, 1] has a Chebyshev series expanston uniformly con-
vergent in the intervals of continuity of f,, with Chebyshev coeflicients defined
as

= ——tan
wk

n 2 /\/
A" - (7;77}1 )

The norm of L,° is now given by

CLO S AT = Y A,

Jo=0) k=0

We shall show that for 0 < o« <7 1, (L,,“fl,)(l) is well defined and (L,l“fn)( 1)
(L.%,) (1). We make use of a formula connecting ultraspherical polynomials
for varying «, which is due to Gegenbaueur {5]. For a summary of these and
other results concerning connections between families of orthogonal poly-
nomials the recent book by Askey [6] is well worth consulting.

Let C,A(x) ~= S pim c2_, (x). Then the b are given by
I =~ 2r =) Ir m o = N T (n—r - N

(n) -
o 00 T 2y ATl r D)

Now T,(x) is given by

Ta(x) - llm C,A (x).

Hence,
[n/2] 7.(n)
n .. b, o )
Tn(x) o i !\lr)l(;l rZ::() ) Cnfzr(v\)
and
b T —2r + )T+ X — ) I(n—r + X
R AN T — ) r! T —r -+ o - 1)
F(Y)(”*2r+f‘¢)1’(r A=) T(n—r--X
T TOEEDTIA =R T —r+ 1)
Let
(n)
) M. by
e =55
then
[n/2]
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where

nl()n —2r + &) I'(r — o) I'(n — r)
ST T AN T —rtat )

With the above definitions we have the following result:
LEMMA 1. We have e/ << 0 and
e~ le(,'ff) : for 1 < r <<[n2] and 0 < x < 1.

Proof. The fact that ¢!™ << 0 for 0 << o << [, | << r < [n/2] is obtained
immediately from the observation that all the arguments to the gamma
functions are positive, as are the factors (n — 2r + a), r! except for I'(—q),
which is negative for 0 << « << 1.

The e, el are simply the coefficients of C,_,, in the expansions of 7,
and T,.,. respectively. Since they are both negative for 1 < r < [n/2]
we have

| e,(fffg) | el =T =) —r— 1)
el et (r-- T —r+ a4+ 2)

.r!T(n—~r+oc+l)
nl(r — )y I'tn —r) "’

Using the relationship I'" (z +- 1) = zI(2) to eliminate the I" terms we have

e (n + 2~ )

e n(r-Dn—r+oa+Dn-—r—1)"°

which is clearly less than unity, and the proof is complete.

2. REARRANGEMENT OF THE CHEBYSHEV SERIES
In this section we adopt for convenience the notation
Tux) = Y aC(x),  where C2(1) = 1. %)
k=0
Let

S = Y AT Y AT = pu) g

k=n-1
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Then (Lnofn)(x) - pn(x) and (Ln‘fn)(x) =~ pn(x) 5 (Lnuq)(x)a where forma]ly

e

(L)) = Y d? Y aPCi )

Aol i=0

- Y o)

0

and we have

b= Y amdl, (2)
i1

For (L,*f,)(1) to be well defined we require these expressions for the b, to
converge, when

(L)1) = (L) = ¥ b, (3)
r=0

3. PROPERTIES OF THE COEFFICIENTS d}"’

o — T
LEMMA 2. The sums Y., d\y and S d%y;_y both converge to non-
positive limits.

Proof. The Chebyshev series Y., ¢ T(x) clearly converges at x -~ - 1.
ie, Yo di™ and Yy (—1)* d{ both converge, which is sufficient to ensure
the convergence of the two sums indicated in our lemma.

In the sum Y, & the coefficient di,,. ;) =~ 0, if p is even, where [x]
signifies the integer part of x € R. Furthermore, since the sign of the d{ is
controlled by the sign of tan{mk/(2n - 1)), this coefficient d[‘}f(’n,% yyy hasn — 1
negative coeflicients preceding it, and » -— 1 positive coeflicients following it.
Since tan(zk/(2n -+ 1)) is symmetrical about [ p(n - 3)] for p even and for

pn +3) —n -+ 1 <k << pn -+ %) - n-—1we have
| /(n) d(n) : 1 < . — ]
gt pir | = 1 dipinap14r | =P .

Now for any even value of p > 2 sums of the form

o (n) o (n)
Ay = Z dp(n—é D47 Bﬁ = Z (/p(u—uﬂ}H—r
1- ngrgn—1 L-ngrgn--1
reven rodd

must be negative, since each positive ¢y, ,),,, 0 << r . n — 1 has a cor-

responding negative dy,, ;,_, of greater modulus. Finally, both ¥ 4"}, and
S, diY,,_, consist of either sums of the form 4, or B, and the proof is
complete.
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4. NORMS OF PROJECTIONS

THEOREM. With the L,* defined as before we have

min YL e L0 Vn = 1.
O-~7ax 1
Proof. From (3) we have

(anjn)([) - (Ln“f)n(l) o Z bT ?

o L a . "
where b, == 3 a"d), from (2). In fact, since alternate a{"*" are zero
we have

o

- 46 ) )
by = Y Pyl i oreven,

[
il

=3 aE g L odd.
j=1

Since the a!"**” and a!""~" are negative and decrease in modulus (Lemma 1)
we have, by application of Lemma 2 that 4, > 0 for 0 <_ r <{ n and the result
follows from the inequalities for 0 << o < I:

TLA > L L > (Lf) () > (L) = L0

The case for a = 1 can be deduced from the continuity of | L2 ] .

5. REMARKS

It does not seem possible to extend this method of proof to the cases where
a > 1, since the sign pattern of Lemma 1 is no longer preserved, although
computational results indicate that the result holds good for o > 1. The
case for « = 1 can also be obtained by using the relation T',(x) = 1 {U,(x) -
U, _5(x)}, when the proof is especially straightforward.

Similar relationships between C,*, C¥'' may perhaps yield the result for
a > 1. Clearly, the existing theorem can be extended to show that the
Chebyshev projection is minimal in any family F whose orthogonal elements
can be arranged so that Lemma 1 continues to hold.
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