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1. INTRODUCTiOl'i

Denote by qa, b] the Banach space of all continuous real-valued functions
defIned on [a, b], with the supremum norm UII ccc maxJ;da,b] i1(x)1 . Denote
by Pn[a, b] the subspace of qa, b] consisting of all polynomials of degree at
most n. Any bounded linear operator L: qa, b] -+ Pn[a, b] such that
Lp ~.... p Vp E Pn is a projection of qa, b] onto Pn[a, b]. LetFbe a family of
projections from qa, b] to Pn[a, b]. Then we say Lo E F is minimal in F if

L o i. L I: VL E F. Cheney and Price [I] provide an excellent survey of the
whole field of projections. If the family F comprises all projections
L: qa, b] -+ Pn[a, b] then the minimall: L II is not known. We shall consider
a particular family of projections F defined by

CLn~f)(x) = I aiCtCx),
o

1:: ,

where the CtCx) are polynomials orthogonal on [-I, I] with respect to the
weight function (1 .- X2)~-t and

a i = Yi r(I - t2)~ ~f(t) Ct{t) dt,
• -1

where Yi is a suitable normalization factor. These polynomials are, of course,
the ultraspherical or Gegenbauer polynomials, and the case IX = °gives the
Chebyshev polynomials T,lx) == cos kB, x ~=c cos B. Tt is well known [2] that

Lno ,I = ~ J" I sin(,.! J=-lL~ I dB = ~ J" I DnCB)1 dB,
7T 0 Sill B/2 7T n

where DnCB) is the Dirichlet kernel. Furthermore, by considering the function
on [0, 7T] given by

inCB) = sgn[DnCB)]
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we obtain il L,,'in Ii LnO . By reference to Zygmund [3, p. 73] we see
that in(x) for x E [ ... J, I] has a Chebyshev series expansion uniformly con
vergent in the intervals of continuity ofin with Chebyshev coefficients defined
as

The norm of L"o is now given by

L" 0 f d/~n)TI.( I) = f dl~")'
1.-0 k~O

We shall show that for 0 < ex J, (LII~fll)(I) is well defined and (L I11,,)(I)
(LnOin) (I). We make use of a formula connecting ultraspherical polynomials
for varying nc, which is due to Gegenbaueur [5]. For a summary of these and
other results concerning connections between families of orthogonal poly
nomials the recent book by Askey [6] is well worth consulting.

L C A() ""rn
/
2] b(n) C a ( Th h b(n) . bet n X L.r~O 1n .21 x). en t e 1 are given y

r(nc)(n _. 2r +- ex) F(r ex- A) r(n - r .c. A)
F(A) F(A ex) r! nn ... r +- nc -i' 1)

Now Tn(x) is given by

Hence,

Tn(x) II (' ] C" .);;> 1m,,, (.\ .
L A ·0 /\

and

b~") r(nc)(n - 2r + nc) F(r +- A - IX) F(n - r -1- A)
-X- AF(A) F(A - ex:) r! F(n- r +- nc -j. I)

r(cx)(n - 2r + ex) r(r -I A - ex) r(n - r +- A)
nA +- 1) r(A - ex) r! r(n - r + nc -+- 1)

Let

then
[nI2]

TnCx) = I e;n)C~_2r(X),
r~O
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where

(n) nrcex)(n - 2r + ex) r(r - ex) rcn - r)
e =---'-::~,------:-~~-'----'----,------'---~,---------'-

r 2rc-cx) r! r(n - r + ex -I I)

With the above definitions we have the following result:

LEMMA I. We hGl'e e~n) < 0 and

S3

for r :c:; [n/2] and 0 1.

Proof The fact that e~n) < 0 for 0 < ex < I, I ,C:;; r -:c:; [n/2] is obtained
immediately from the observation that all the arguments to the gamma
functions are positive, as are the factors (n - 2r + ex), r! except for r( -ex),
which is negative for 0 < ex < I.

The e~n), e~~i2) are simply the coefficients of Cn~2r in the expansions of Tn
and T n +2 , respectively. Since they are both negative for I < r < [n/2]
we have

(n --;- 2) r(r --;- 1- ex) rcn - r - I)
(r -I- I)! r(n - r +x -+- 2)

r! r(n ~~ r + ex + I)
nrcr - ex) r(n -- rf .

Using the relationship r (z + 1) = zr(z) to eliminate the r terms we have

(n + 2)(r- ex)
nCr --;- I)(n - r + ex + 1)(/1 -- r ~- I) ,

which is clearly less than unity, and the proof is complete.

2. REARRANGEMENT OF THE CHEBYSHEV SERIES

In this section we adopt for convenience the notation

Tn(x) = I ain)Ck~(X),
k~O

Let

n

In(x) = I d~n)Tk(x) + I d~n'Tk(x) = Pn(X) + q(x)
k=O k=n-;·]

(I)
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and we have

(Ln"q)(X)

br

Q II

"\' l(n) '\' (k)C"()L. C k L. ac Ie X
I.. , '/Ii I 1,--(1

n

I brC/(x)
(0

J

"\' c/ n i j)d(n)
L I' n J

i-I

(2)

For (Ln"!n)(l) to be well defined we require these expressions for the br to
converge, when

(Lrdn)(I) - (Lr,t'i~)(1)- I b,.
r=O

3. PROPERTIES OF THE COEFFICIENTS d{'<J

(3)

LEMMA 2. The sums L~~l dr\r~2j and L;~l dr\t~2j_1 both converge to non
positive limits.

Proof The Chebyshev series L~~u dL"J TI,·(x) clearly converges at x L
i.e., L:~u dL") and L~J~o (-1)' dL") both converge, which is sufficient to ensure
the convergence of the two sums indicated in our lemma.

In the sum L:~ni1 dt' the coefficient d[ 11[1Ii t]] 0, if p is even, where [x]
signifies the integer part of x E IR. Furthermore, since the sign of the dL") is
controlled by the sign of tan(7Tk!(2n -+ 1», this coefficient C!i;:!1I i IlJ has n -- I
negative coefficients preceding it, and n -- 1 positive coefficients following it.
Since tan(7Tk!(2n -+ 1) is symmetrical about [p(n -:- DJ for p even and for
p(n -+- ~) - n 1 k p(n L D n - 1 we have

I /(11) I I d(1I) i
I ( [p(n-'-})]-T > 1,,(1I-H)]+T I 1 ::;; r 11 - L

Now for any even value of p ;;;; 2 sums of the form

A'l =~
1· n:(.r<n-l

reven

d in)
p(1I-I j)+T , 8" ==

I-n<.r<.n-l
Todd

must be negative, since each positive d!,';!'+!H r' 0 r 11 - 1. has a cor
responding negative d~~;l+!.)_rof greater modulus. Finally, both L~ol d}\r~2j and
L:1 d,\")2j_1 consist of either sums of the form A p or B p and the proof is
complete.
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4. NORMS OF PROJECTIONS

THEOREM. With the Lno defined as before we have
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Proal From (3) we have

L °rl 'in I.

11

I b"
r==O

where b, =c= ,,'"' 1 a(n+j)d(l~) from (2) In fact, since alternate ar(n+j) are zeroLJ= r n,) . .

we have

b,. ~

; I

JI- r even,

II r odd.

Since the a~n+2j) and a~"+2j-l) are negative and decrease in modulus (Lemma I)
we have, by application of Lemma 2 that b,.> 0 for 0 r n and the result
follows from the inequalities for 0 < ()C < I:

L II' ii > L""J,, Ii > (Ln1~)(I) > (LnOJ,,)(I) = i! Lno i! .

The case for ex = I can be deduced from the continuity of L n" i..

5. REMARKS

It does not seem possible to extend this method of proof to the cases where
:X > I, since the sign pattern of Lemma I is no longer preserved, although
computational results indicate that the result holds good for ex > 1. The
case for ex == 1 can also be obtained by using the relation Tn(x) = t {lfn(x) ~.

lfn_2(x)}, when the proof is especially straightforward.
Similar relationships between Cn", C~H may perhaps yield the result for

lX > I. Clearly, the existing theorem can be extended to show that the
Chebyshev projection is minimal in any family F whose orthogonal elements
can be arranged so that Lemma I continues to hold.
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